Nuestro sitio web utiliza cookies para mejorar y personalizar su experiencia y para mostrar anuncios (si los hay). Nuestro sitio web también puede incluir cookies de terceros como Google Adsense, Google Analytics, Youtube. Al usar el sitio web, usted consiente el uso de cookies. Hemos actualizado nuestra Política de Privacidad. Por favor, haga clic en el botón para consultar nuestra Política de Privacidad.

Gobernanza Internacional de la IA: ¿Qué se Debate?

La gobernanza internacional de la inteligencia artificial (IA) congrega a gobiernos, organizaciones internacionales, empresas, instituciones académicas y actores de la sociedad civil para establecer pautas, estándares y herramientas destinadas a orientar cómo se desarrolla y emplea esta tecnología. Las discusiones integran dimensiones técnicas, éticas, económicas, de seguridad y geopolíticas. A continuación se detallan los asuntos clave, ejemplos específicos y los mecanismos que distintos foros proponen o ya ponen en práctica.

Amenazas para la seguridad y la integridad

La atención dedicada a la seguridad abarca errores involuntarios, usos malintencionados y repercusiones estratégicas de gran alcance. Entre los aspectos esenciales se encuentran:

  • Riesgos sistémicos: la posibilidad de que modelos extremadamente avanzados se comporten de manera inesperada o superen los mecanismos de control, comprometiendo infraestructuras críticas.
  • Uso dual y militarización: la incorporación de IA en armamento, sistemas de vigilancia y operaciones de ciberataque. En debates de la ONU y del Convenio sobre Ciertas Armas Convencionales se analizan opciones para regular o incluso vetar sistemas de armas totalmente autónomos.
  • Reducción del riesgo por diseño: estrategias como evaluaciones adversarias, auditorías de seguridad y la exigencia de análisis de riesgo previos a cualquier implementación.

Ejemplo: en el escenario multilateral se debate la formulación de reglas obligatorias relacionadas con SALA (sistemas de armas letales autónomas) y la implementación de mecanismos de verificación destinados a impedir su proliferación.

Privacidad, vigilancia y protección de los derechos humanos

La IA genera desafíos para los derechos civiles y las libertades públicas:

  • Reconocimiento facial y vigilancia masiva: posible debilitamiento de la privacidad y aparición de sesgos. Diversos países y la Unión Europea analizan imponer límites o pausas a su implementación a gran escala.
  • Protección de datos: gestión responsable de grandes conjuntos de información para entrenar modelos, junto con aspectos de consentimiento, reducción de datos y procesos de anonimización.
  • Libertad de expresión e información: sistemas de moderación automatizada, creación de contenido engañoso y deepfakes que pueden influir en dinámicas democráticas.

Caso: campañas de desinformación potenciadas por generación automática de contenido han llevado a debates en foros electorales y a propuestas para obligaciones de transparencia sobre el uso de sistemas generativos en campañas.

Equidad, no discriminación y inclusión

Los modelos pueden reproducir o amplificar sesgos existentes si los datos de entrenamiento no son representativos:

  • Discriminación algorítmica: evaluaciones independientes, métricas de equidad y mecanismos de reparación.
  • Acceso y desigualdad global: riesgo de concentración de capacidad tecnológica en pocos países o empresas; necesidad de transferencia de tecnología y cooperación para capacidades locales.

Dato y ejemplo: estudios han mostrado que modelos entrenados con datos sesgados dan peores resultados para grupos subrepresentados; por ello iniciativas como evaluaciones de impacto social y requisitos de testeo público son cada vez más solicitadas.

Transparencia, explicabilidad y trazabilidad

Los reguladores discuten cómo garantizar que sistemas complejos sean comprensibles y auditables:

  • Obligaciones de transparencia: informar cuando una decisión automatizada afecta a una persona, publicar documentación técnica (fichas del modelo, orígenes de datos) y facilitar mecanismos de recurso.
  • Explicabilidad: niveles adecuados de explicación técnica para distintos públicos (usuario final, regulador, tribunal).
  • Trazabilidad y registro: bitácoras de entrenamiento y despliegue para permitir auditorías posteriores.

la propuesta legislativa de la Unión Europea organiza los sistemas por niveles de riesgo y requiere que se entregue documentación exhaustiva para aquellos que se catalogan como de alto riesgo

Cumplimiento y responsabilidad legal

La asignación de responsabilidades ante daños generados por IA es un tema central:

  • Regímenes de responsabilidad: debate entre responsabilidad del desarrollador, del proveedor, del integrador o del usuario final.
  • Certificación y conformidad: modelos de certificación previa, auditorías independientes y sanciones por incumplimiento.
  • Reparación a las víctimas: mecanismos rápidos para compensación y remediación.

Datos normativos: la propuesta de la UE prevé sanciones ajustadas a la gravedad, incluidas multas de gran envergadura ante incumplimientos en sistemas clasificados como de alto riesgo.

Derechos de propiedad intelectual y disponibilidad de datos

El uso de contenidos destinados al entrenamiento de modelos ha provocado fricciones entre la creación, la reproducción y el aprendizaje automático:

  • Derechos de autor y recopilación de datos: disputas legales y demandas de precisión acerca de si el proceso de entrenamiento representa un uso permitido o necesita una licencia formal.
  • Modelos y datos como bienes estratégicos: discusiones sobre la conveniencia de imponer licencias obligatorias, habilitar el intercambio de modelos en repositorios abiertos o limitar su exportación.

Varios litigios recientes surgidos en distintos países han puesto en entredicho la legalidad del entrenamiento de modelos con material protegido, lo que está acelerando ajustes normativos y promoviendo acuerdos entre las partes involucradas.

Economía, mercado laboral y dinámica competitiva

La IA puede transformar mercados, trabajos y estructuras empresariales:

  • Sustitución y creación de empleo: estudios muestran efectos heterogéneos: algunas tareas se automatizan, otras se complementan; políticas activas de formación son clave.
  • Concentración de mercado: riesgo de monopolios por control de datos y modelos centrales; discusión sobre políticas de competencia y interoperabilidad.
  • Impuestos y redistribución: propuestas para impuestos sobre beneficios derivados de automatización o para financiar protección social y reentrenamiento.

Ejemplo: variantes regulatorias incluyen incentivos fiscales para inversiones en capacitación y cláusulas en contratos públicos que favorezcan proveedores locales.

Sostenibilidad ambiental

El impacto energético y material asociado al entrenamiento y funcionamiento de los modelos se encuentra sujeto a regulaciones y prácticas recomendadas:

  • Huella de carbono: la preparación de modelos de gran escala puede requerir un uso considerable de energía; se debaten métricas y posibles límites.
  • Optimización y transparencia energética: adopción de sistemas de eficiencia, divulgación del consumo y transición hacia infraestructuras alimentadas con fuentes renovables.

Estudio relevante: diversos análisis han puesto de manifiesto que entrenar modelos de lenguaje de manera intensiva puede llegar a producir emisiones comparables a decenas o incluso cientos de toneladas de CO2 cuando el proceso no se optimiza adecuadamente.

Normas técnicas, estándares y interoperabilidad

La adopción de estándares promueve mayor seguridad, confianza y dinamiza el comercio:

  • Marco de normalización: elaboración de estándares técnicos internacionales que abordan la solidez, las interfaces y los formatos de datos.
  • Interoperabilidad: asegurar que distintos sistemas puedan colaborar manteniendo niveles adecuados de seguridad y privacidad.
  • Rol de organismos internacionales: OCDE, UNESCO, ONU, ISO y diversos foros regionales intervienen en la coordinación y armonización regulatoria.

Ejemplo: la OCDE formuló principios para la IA que han servido como referencia para muchas políticas públicas.

Procesos de verificación, observancia y coordinación multilateral

Sin mecanismos de verificación sólidos, las normas quedan como simples declaraciones:

  • Inspecciones y auditorías internacionales: se plantean observatorios multilaterales que monitoreen el cumplimiento y difundan información técnica.
  • Mecanismos de cooperación técnica: apoyo para naciones con menor capacidad, intercambio de buenas prácticas y recursos destinados a reforzar la gobernanza.
  • Sanciones y medidas comerciales: debate sobre restricciones a la exportación de tecnologías delicadas y acciones diplomáticas frente a eventuales incumplimientos.

Caso: restricciones en el comercio de semiconductores demuestran cómo la tecnología de IA puede convertirse en materia de política comercial y seguridad.

Instrumentos normativos y recursos aplicados

Las respuestas normativas varían entre instrumentos vinculantes y enfoques flexibles:

  • Regulación vinculante: leyes nacionales y regionales que imponen obligaciones y sanciones (ejemplo: propuesta de ley en la Unión Europea).
  • Autorregulación y códigos de conducta: guías emitidas por empresas y asociaciones que pueden ser más ágiles pero menos exigentes.
  • Herramientas de cumplimiento: evaluaciones de impacto, auditorías independientes, etiquetas de conformidad, y entornos experimentales regulatorios para probar políticas.

Gobernanza democrática y participación de la ciudadanía

La validez de las normas se sustenta en una participación amplia:

  • Procesos participativos: audiencias públicas, órganos éticos y la presencia de comunidades involucradas.
  • Educación y alfabetización digital: con el fin de que la población comprenda los riesgos y se involucre en la toma de decisiones.

Ejemplo: en distintos países, varias iniciativas de consulta ciudadana han incidido en las exigencias de transparencia y en las restricciones aplicadas al empleo del reconocimiento facial.

Sobresalientes tensiones geopolíticas

La carrera por la primacía en IA implica riesgos de fragmentación:

  • Competencia tecnológica: inversiones estratégicas, subsidios y alianzas que pueden crear bloques tecnológicos divergentes.
  • Normas divergentes: diferentes enfoques regulatorios (más restrictivo versus más permissivo) afectan comercio y cooperación internacional.

Resultado: la gobernanza global busca equilibrar harmonización normativa con soberanía tecnológica.

Iniciativas y menciones multilaterales

Existen varias iniciativas que sirven de marco de referencia:

  • Principios de la OCDE: lineamientos orientadores sobre la IA confiable.
  • Recomendación de la UNESCO: marco ético para orientar políticas nacionales.
  • Propuestas regionales: la Unión Europea impulsa un reglamento centrado en riesgo y obligaciones de transparencia y seguridad.

Estas iniciativas muestran la combinación de normas no vinculantes y propuestas legislativas concretas que avanzan en distintos ritmos.

La gobernanza internacional de la IA es un entramado dinámico que debe integrar exigencias técnicas, valores democráticos y realidades geopolíticas. Las soluciones efectivas requieren marcos normativos claros, capacidades de verificación creíbles y mecanismos

Por Angela Carrasco

También te puede gustar