The New York City Metropolitan Transportation Authority (MTA) has partnered with Google for a groundbreaking pilot project designed to enhance the dependability of its outdated subway network. Utilizing Google’s smartphone technology, this initiative aims to detect and resolve track problems proactively to prevent service interruptions. Called “TrackInspect,” the program marks a major advancement in incorporating artificial intelligence and contemporary technology into public transportation.
The Metropolitan Transportation Authority (MTA) in New York City has teamed up with Google in an innovative pilot project aimed at improving the reliability of its aging subway system. By leveraging Google’s smartphone technology, the initiative seeks to identify and address track issues before they lead to service disruptions. Known as “TrackInspect,” the program represents a significant step forward in integrating artificial intelligence and modern technology into public transit.
“In recognizing the initial indicators of track deterioration, we not only decrease maintenance expenses but also lessen disruptions experienced by passengers,” stated Demetrius Crichlow, the president of New York City Transit, in a statement issued in late February.
The collaboration between the MTA and Google forms part of a wider initiative to update New York’s 120-year-old subway network, which still struggles with issues tied to its outdated infrastructure and regular delays. Although the pilot program showed encouraging outcomes, uncertainties persist regarding the potential expansion of TrackInspect due to the MTA’s budgetary limitations.
Addressing delays using AI and smartphones
New York City’s commuters frequently encounter subway delays as a recurring issue. Towards the end of 2024, the MTA disclosed that tens of thousands of delays were occurring monthly, with December alone surpassing 40,000 incidents. These interruptions stem from multiple causes, such as track problems, construction activities, and crew shortages.
The TrackInspect initiative focuses on tackling a crucial element of the problem: pinpointing and correcting mechanical issues before they worsen. Throughout the pilot phase, six Google Pixel smartphones were placed in four R46 subway cars, recognizable by their unique orange and yellow seats. These devices captured 335 million sensor readings, more than one million GPS points, and 1,200 hours of audio data.
The TrackInspect program aims to address one critical aspect of the issue: identifying and resolving mechanical problems before they escalate. During the pilot, six Google Pixel smartphones were installed on four R46 subway cars, which are known for their distinctive orange and yellow seats. The devices recorded 335 million sensor readings, over one million GPS data points, and 1,200 hours of audio.
The smartphones were strategically placed both inside and underneath the subway cars. While the external devices were equipped with microphones to capture audio and vibrations, the internal phones had their microphones disabled to ensure passenger conversations were not recorded. Instead, these devices focused solely on vibrations to detect irregularities in the tracks.
La línea de tren A, seleccionada para el piloto, presentó un entorno de prueba variado con vías tanto subterráneas como elevadas. Además, incluyó segmentos de infraestructura recientemente construida, ofreciendo un punto de referencia para comparaciones. Aunque no todos los retrasos en la línea A se deben a problemas mecánicos, los datos recopilados durante el programa piloto podrían contribuir a resolver problemas recurrentes y mejorar el servicio en general.
Encouraging outcomes, yet challenges persist
The TrackInspect initiative produced promising results, as the AI system accurately identified 92% of defect locations that were confirmed by MTA inspectors. Sarno estimated his own accuracy rate in anticipating track defects from audio data to be approximately 80%.
The initiative also featured an AI-driven tool based on Google’s Gemini model, enabling inspectors to inquire about maintenance procedures and repair records. This conversational AI furnished inspectors with straightforward, actionable insights, which further streamlined the maintenance workflow.
Despite its achievements, the pilot program brings up questions concerning its scalability and expenses. The MTA has not revealed the potential cost of deploying TrackInspect throughout its entire subway network, which comprises 472 stations and accommodates over one billion riders each year. The agency is also facing financial difficulties, requiring billions of dollars to finish ongoing infrastructure projects.
Despite its success, the pilot program raises questions about scalability and cost. The MTA has not disclosed how much it would cost to implement TrackInspect across its entire subway system, which includes 472 stations and serves over one billion riders annually. The agency is already grappling with financial challenges, needing billions of dollars to complete existing infrastructure projects.
An increasing trend in transit advancement
La colaboración de Nueva York con Google forma parte de una tendencia más amplia en la que ciudades de todo el mundo están adoptando inteligencia artificial y tecnologías inteligentes para mejorar los sistemas de transporte público. Por ejemplo, New Jersey Transit ha utilizado IA para analizar el flujo de pasajeros y la gestión de multitudes, mientras que la Autoridad de Tránsito de Chicago ha implementado medidas de seguridad basadas en IA para detectar armas. En Pekín, se ha introducido la tecnología de reconocimiento facial como alternativa a los boletos de transporte tradicionales, disminuyendo los tiempos de espera en horas pico.
Google ya ha colaborado anteriormente con otras agencias de transporte. El gigante tecnológico ha creado herramientas para optimizar la programación de Amtrak y se ha aliado con proveedores de tecnología de estacionamiento para integrar datos de aparcamiento en la calle en Google Maps. No obstante, la envergadura y complejidad del sistema de metro de Nueva York hace que este proyecto sea especialmente ambicioso.
The MTA operates the largest subway network in the United States, offering 24-hour service on numerous lines. This continuous operation introduces additional complexity to maintenance tasks, as repairs and upgrades frequently have to be performed alongside active service. Employing AI and smartphone technology, the TrackInspect program might assist the MTA in tackling these challenges more effectively.
Looking forward
Aunque el piloto de TrackInspect ha concluido, la MTA está investigando asociaciones con otros proveedores de tecnología para seguir mejorando sus procesos de mantenimiento. La agencia también está evaluando los datos del piloto para determinar su impacto en la reducción de retrasos y mejora del servicio. Las primeras señales sugieren que ciertos tipos de retrasos, como los causados por problemas de frenado y defectos en las vías, disminuyeron en la línea A durante el periodo del piloto. No obstante, la MTA advierte que se requiere un análisis más detallado para confirmar un vínculo directo con el programa.
Por el momento, el piloto simboliza un paso esperanzador hacia la modernización de las operaciones de la MTA y la resolución de los desafíos de un sistema de tránsito envejecido. Al combinar el conocimiento de empresas tecnológicas como Google con la experiencia de los profesionales del transporte, la ciudad de Nueva York podría ofrecer una experiencia de metro más confiable para sus millones de pasajeros diarios.
For now, the pilot represents a promising step toward modernizing the MTA’s operations and addressing the challenges of an aging transit system. By combining the expertise of tech companies like Google with the experience of transit professionals, New York City may be able to deliver a more reliable subway experience for its millions of daily riders.
As Sarno reflects on the project, he emphasizes the potential of AI-driven solutions to transform public transportation. “This technology allows us to detect problems earlier, respond faster, and ultimately provide better service to our customers,” he said.
The MTA’s collaboration with Google underscores the potential of public-private partnerships to drive innovation in critical infrastructure. Whether TrackInspect becomes a permanent fixture in New York’s subway system remains to be seen, but its success highlights the possibilities of integrating cutting-edge technology into the daily lives of commuters.